Differential Sensitivity of Src-Family Kinases to Activation by SH3 Domain Displacement
نویسندگان
چکیده
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.
منابع مشابه
Binding, domain orientation, and dynamics of the Lck SH3-SH2 domain pair and comparison with other Src-family kinases.
The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2 domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiol...
متن کاملThe Tyrosine Kinase Csk Dimerizes through Its SH3 Domain
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyro...
متن کاملActivation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck
BACKGROUND The adaptor protein Nck consists of three Src homology 3 (SH3) domains followed by one SH2 domain. Like the Grb2 adaptor protein, which is known to couple receptor tyrosine kinases to the small GTPase Ras, Nck is presumed to bind to tyrosine-phosphorylated proteins using its SH2 domain and to downstream effector proteins using its SH3 domain. Little is known, however, about the speci...
متن کاملStructure and function of the SH3 domain from Bruton ́s tyrosine kinase
Mutations in the gene coding for Bruton ́s tyrosine kinase (Btk) lead to a lymphocyte differentiation block, which results in an extreme deficiency of B cells and plasma cells in the blood. These mutations are one cause of the hereditary immunodeficiency Xlinked agammaglobulinemia. Evolutionarily, Btk belongs to the Tec family of nonreceptor protein tyrosine kinases. Members of this family share...
متن کاملA mechanism for combinatorial regulation of electrical activity: Potassium channel subunits capable of functioning as Src homology 3-dependent adaptors.
It is an open question how ion channel subunits that lack protein-protein binding motifs become targeted and covalently modified by cellular signaling enzymes. Here, we show that Src-family protein tyrosine kinases (PTKs) bind to heteromultimeric Shaker-family voltage-gated potassium (Kv) channels by interactions between the Src homology 3 (SH3) domain and the proline-rich SH3 domain ligand seq...
متن کامل